[HTML][HTML] Wound recognition across the tree of life

M Heil, WG Land, M Tör - Frontiers in Plant Science, 2016 - frontiersin.org
M Heil, WG Land, M Tör
Frontiers in Plant Science, 2016frontiersin.org
All multi-cellular organisms share the necessity to perceive damage and to employ an
adequate immune response to withstand injury and infection. The role of damage-
associated molecular patterns (DAMPs) in the mammalian adaptive immune system and in
allograft rejection was discovered by Polly Matzinger and Walter Land (Land et al., 1994;
Matzinger, 1994). These discoveries revolutionized the research into transplantation and
immunity (Land et al., 2016a, b) and improved the understanding of chronic and …
All multi-cellular organisms share the necessity to perceive damage and to employ an adequate immune response to withstand injury and infection. The role of damage-associated molecular patterns (DAMPs) in the mammalian adaptive immune system and in allograft rejection was discovered by Polly Matzinger and Walter Land (Land et al., 1994; Matzinger, 1994). These discoveries revolutionized the research into transplantation and immunity (Land et al., 2016a, b) and improved the understanding of chronic and inflammation-related diseases such as Alzheimer's disease, Diabetes, Lupus, Rheuma (Land, 2015a, b), and many forms of cancer (Land, 2015c; Candeias and Gaipl, 2016). Unfortunately, the tendency toward specialization in contemporary science, albeit allowing for an incredible increase in the efficiency at which knowledge is being generated, enhances the risk to lose the communication across disciplines. A prime example of this situation is the research into injury perception and immunity, which developed in distinct disciplines for mammals and plants. In consequence, the first application of the DAMPs concept to plants appeared 13 years after their first description for mammals (Lotze et al., 2007). Two years later, four review papers discussed the role of DAMPs and “damaged-self recognition” in plants (Boller and Felix, 2009; Heil, 2009; Metraux et al., 2009; Tör et al., 2009).
In an attempt to close this gap,‘DAMPs, 2016’the first international and trans-disciplinary congress on injury perception and immunity, aims at promoting the trans-disciplinary research into wound recognition in organisms across the tree of life. A central step toward a better cross-disciplinary communication in this field was the Research Topic “Wound recognition across the tree of life.” Eleven articles co-authored by 43 researchers were published between July and November 2014 and attracted over 55,000 views by now (http://journal. frontiersin. org/researchtopic/2173/wound-recognition-across-the-tree-of-life). Reviews summarized the functions of DAMPs in insects (Krautz et al.) and plants (Savatin et al.), applied the “danger model” to mosquitoes (Moreno-García et al.), and discussed the role of extracellular ATP (eATP) as a DAMP in plants (Tanaka et al.). It was known before that eATP induces plant defense (Roux and Steinebrunner, 2007; Chivasa et al., 2009; Heil et al., 2012), but only the discovery of its specific receptor (Choi et al., 2014) provided unambiguous support for a role of eATP as a DAMP (Tanaka et al.). Interestingly, eATP also acts as DAMP in the fungus, Trichoderma viride (Medina-Castellanos et al.).
Frontiers